

JOURNAL OF LANGUAGE

 AND LINGUISTIC STUDIESISSN: 1305-578X
Journal of Language and Linguistic Studies, 16(4), 2130-2162; 2020

An autosegmental analysis of the derivation of weak active participles from triconsonantal verbs in modern standard Arabic

Eman Ali a ${ }^{1}$ ID, Radwan Salim Mahadin ${ }^{\text {b }}$ ID
${ }^{a}$ University of Jordan, Amman, Jordan
${ }^{b}$ University of Jordan, Amman, Jordan

APA Citation:

Ali, E. \& Mahadin, R. (2020). An autosegmental analysis of the derivation of weak active participles from triconsonantal verbs in modern standard Arabic. Journal of Language and Linguistic Studies, 16(4), 2130-2162. Doi: 10.17263/jlls. 851039
Submission Date: 26/6/2020
Acceptance Date:25/8/2020

Abstract

This study aims to analyze the derivation of weak active participles (APs) from triconsonantal imperfective verbs within the X-slot model of autosegmental phonology. The first stage of the research involves building a corpus of APs from a well-established corpus-based dictionary, namely $m u^{c} d з a m$ Palluyah Palcarabijjah Palmu ${ }^{c} a: \underline{s}$ irah 'Dictionary of Modern Arabic Language'. The corpus contains 620 APs which are categorized, in accordance with the position of the glide in their stems, into initially, medially, finally and doubly weak APs. The analysis reveals that despite having irregular surface representations, the underlying representations of weak APs are parallel to those of their strong counterparts. The surface irregularities of these APs are attributable to the inherent instability of the glides which causes them to be susceptible to diverse phonological rules. These phonological rules are given accurate and simple representations in autosegmental phonology due to the autonomy that elements on different tiers have in this approach.

© 2020 JLLS and the Authors - Published by JLLS.
Keywords: Autosegmental phonology; MSA; corpus-study; weak stems; APs

1. Introduction

Arabic is a Semitic language that has a rich literary heritage dating back to the pre-Islamic period. In addition to Arabic, other major members of the Semitic language family include Aramaic, Ugaritic, Hebrew, Ethiopian, Amharic, Phoenician, Akkadian and Eblaite (Hetzron, 1992). Semitic languages share common phonological, morphological, and syntactic features (Watson, 2002). In terms of phonology, these languages generally employ a limited number of vowels and a wide number of consonants and their consonantal systems incorporate a rich inventory of gutturals, emphatics and geminates. Semitic languages are further marked by their root-and-pattern morphology in which the roots are semantic abstractions embodied by a set of consonants that are inserted into templatic patterns to indicate derivational and inflectional aspects. The distinguishing syntactic features of Semitic

[^0]languages include the common usage of VSO (verb-subject-object) word order and the tendency of qualifiers to follow their qualified terms (e.g. adjectives follow the nouns they qualify).

Modern Standard Arabic (MSA) is argued to be a direct descendant of Classical Arabic (CA), i.e. the language of Quran. The emergence of MSA is attributed to the exposure to Western civilization and to the spread of literacy and education. A distinction between the two variants of Standard Arabic, viz. CA and MSA, is commonly made by linguists. The former is a literary form of Arabic used in the Quran and in the pre and early Islamic eras, whereas the latter is the form utilized in formal language contexts in contemporary Arab world. Even though the lexis and stylistics of MSA are different from those of CA, the two variants are largely similar in terms of phonology, morphology and syntax. In addition to the two standardized variants of Arabic, various regional vernaculars of Arabic are used in informal speech contexts. Examples of Arabic regional vernaculars include Jordanian Arabic, Palestinian Arabic and Iraqi Arabic. Table 1 presents the consonantal inventory of MSA:

Table 1. MSA Consonantal Inventory

b Voiced bilabial stop	s	Voiceless dental-alveolar fricative	k	Voiceless velar plosive
m Voiced bilabial nasal	Z	Voiced dental-alveolar fricative	X	Voiceless uvular fricative
f Voiceless labiodental fricative	t	Voiceless emphatic dentalalveolar plosive	\%	Voiced uvular fricative
j Voiced palatal glide	$\underline{\text { d }}$	Voiced emphatic dental-alveolar plosive	q	Voiceless uvular stop
w Voiced labiovelar glide	$\underline{\text { s }}$	Voiceless emphatic dentalalveolar fricative	$\underline{\text { h }}$	Voiceless pharyngeal fricative
θ Voiceless interdental fricative	$\underline{\text { ¢ }}$	Voiced emphatic interdental fricative	c	Voiced pharyngeal fricative
ð Voiced interdental fricative	r	Voiced dental-alveolar tap	?	Voiceless glottal stop
Voiceless dental-alveolar stop	1	Voiced dental-alveolar lateral	h	Voiceless glottal fricative
d Voiced dental-alveolar stop	\int	Voiceless postalveolar fricative		
n Voiced dental-alveolar nasal	d3	Voiced postalveolar affricate		

As can be noticed from Table 1, MSA, as a member of the Semitic family, employs a set of glottal $(?, h)$, pharyngeal ($\underline{(},{ }^{c}$) and uvular (x, γ) consonants. These consonants are grouped under one category labelled gutturals. Gutturals are consonants produced with "a primary constriction in the posterior region of the vocal tract" (McCarthy, 1994). The phonemic inventory of MSA also has a class of consonants whose production involves a primary constriction in the interior region of the vocal tract, or the oral cavity, accompanied by a secondary retraction of the tongue towards to the posterior region of the vocal tract, or the pharyngeal cavity. This class is referred to as emphatics and it includes four phonemes $/ \mathrm{t}, \mathrm{d}$, $\underline{\mathrm{s}}, \underline{\jmath} /$ which contrast with their non-emphatic counterparts $/ \mathrm{t}, \mathrm{d}, \mathrm{s}, \mathrm{\delta} /$ (e.g. ti:n 'figs' and $\underline{t i}: n$ 'mud'). Contrary to the rich consonantal inventory of MSA, the vocalic inventory of this variety of Arabic only contains three short vowels as shown in Table 2.

Table 2. MSA Short Vowels

i	high front unrounded
a	low central unrounded
u	high back rounded

Each of these three short vowels has a long counterpart. However, it is argued that even though long vowels have phonetic realizations, these vowels are not present on the underlying level of representation. Rather, a long vowel is composed of a sequence of a short vowel and a glide in the underlying representation. This sequence is changed to a long vowel through application of certain phonological processes such as syllabicity assimilation (e.g. $/ \mathrm{ij} / \rightarrow / \mathrm{ii} / \rightarrow / \mathrm{i}: /$) and glide deletion (e.g. $/ \mathrm{uwu} / \rightarrow / \mathrm{uu} / \rightarrow$ $/ \mathrm{u}: /$). In order to support this argument, many synchronic and diachronic pieces of evidence which suggest that this analysis of long vowels is capable of capturing significant generalizations about the shape of the basic stems in Arabic and the rules utilized for deriving the modified forms of these stems are presented (cf. Brame, 1970; Levy, 1971). In addition to the short and long monophthongs, MSA has two diphthongs, namely /aw/ and /aj/ (e.g. nawm 'sleeping', bayt 'house'). As for the permissible syllables in MSA, there are only five types which are listed below with illustrative examples:

1. a. CV (open, light): da-ra-sa 'he studied'
b. CVC (closed, heavy): min 'from'
c. CVV (open, heavy): qa:-ma: 'they (dual, masculine) stood up'
d. CVVC (closed, super-heavy): na:m 'he slept'
e. CVCC (closed, super-heavy): bint 'a girl'

1.1. Aims of the Study

This study attempts to explore the phonological processes that APs undergo during their derivation from triconsonantal verbs in MSA within the framework of autosegmental phonology. The AP, also known as the noun of agent and the noun of subject, is a nominal derivative of verbs which describes the entity that performs the action denoted by the verb from which it is derived (Al-Faxiri, 1996; Abd Al-Ghani, 2010; Al-Samurrai, 2013; among others). This nominal derivative belongs to the word class of substantives which consists of nouns and adjectives because it takes the same inflectional forms of this class, i.e., it is declined for definiteness (?alka:tib 'the writer', ka:tibun 'a writer') gender (e.g. $z a:$ Pirun 'a male visitor', za:Piratun 'a female visitor'), number (e.g. ba: hie 'a researcher', ba:hiөa:n 'two researchers', and ba:hiөu:n 'researchers') and case (e.g. the active participle form mu'allim 'a teacher' is declined for the nominative, accusative and genitive cases in $m u^{c}$ allimun, mu alliman and $m u^{c}$ allimin, respectively) (Ryding 2005, 102). In terms of syntax, the AP may function as a noun (e.g. the AP $\underline{t} a$:libun 'a student' in the phrase Pata: $\underline{t} a: l i b u n$ 'a student came'), an adjective (e.g. the AP ba:ridun 'cold' in the phrase hawa:?un ba:ridun 'cold air'), an adverb (e.g. the AP mutaPxxiratan in the phrase bada?at mutaPxxiratan 'she started late') or a verb substitute (e.g. the AP na:Pimun in the phrase huwa na:Pimun 'he is sleeping') (Holes, 1995).

To make the examination feasible, one type of APs is chosen, namely the weak APs. Weak APs are chosen because they have a glide as one of their radicals. The APs which have glides are "more subject to various phonological rules than others, due to the instability of the glides in predictable phonological environment" (Mahadin, 1982, p. 211). The analysis of a category of APs that has glides can, thus, provide a more in-depth view of the phonological processes that are involved in their formation. Based on the position that the glide occupies, weak APs are classified into initially, medially, finally and doubly
weak (Wright, 1896). One of the major proposals concerning these weak stems is that, despite having irregular surface representations, their underlying representations are parallel to those of their strong counterparts. The apparent irregularity of weak stems is ascribed to their susceptibility to various phonological rules due to the inherent instability of the glides that constitute at least one of the radicals (cf. Brame, 1970 and Mahadin, 1982).

The APs can be derived from the ten forms of Arabic verbal stems whether the stems are triconsonantal or quadriconsonantal, transitive or intransitive, strong or weak (Ryding, 2005; Abd AlGhani, 2010; Alshdaifat, 2014). This study is restricted to examining the derivation of APs from form I of the imperfective verb. This form is generally identified as the basic, or non-derived, form of verbs which serves as the base of derivation for the other nine forms of verbs. Form I of the imperfective verb has the pattern $\left|j a+\mathrm{C}_{1} \mathrm{C}_{2}\left\{\begin{array}{c}a \\ u \\ i\end{array}\right\} \mathrm{C}_{3}\right|$ (e.g. ja-ktub 'he writes') which consists of the third person masculine prefix $|\mathrm{ja}|$ and a triconsonantal stem that has one stem vowel. In addition to the $|\mathrm{ja}|$, the unmarked prefix of the imperfective stem, a number of personal prefixes can attach to the imperfective stem such as $|\mathrm{Pa}|$, the first person singular prefix and |na|, the first person plural prefix. The $|\mathrm{ja}|$ prefix and other prefixes and suffixes are not part of the base for deriving forms from the verb, rather only the stem of the verb is used as the base of derivation.

It should be indicated that most of the analyses of the AP derivation considered the stem of the perfective verb, rather than that of the imperfective, as the base from which triconsonantal APs are derived (e.g. Shahin, 1980; Al-Raagihi, 1984). In contrast to the usual practice among researchers, Mahadin (1982), Benmamoun (1999) and Abdo (2008), among others, presented valid arguments for employing the imperfective stem as the base of derivation of the AP and the other derived forms in Arabic. For instance, Mahadin (1982) argued that the vowel of the perfective stem can be predicated form the vowel of imperfective stem, but not vice versa. That is, the stem vowel of the imperfective is lexically determined in the sense that it cannot be predicated accurately by general rules and thus native speakers are assumed to store the imperfective stems in their mental lexicons along with the rules that derive their perfective counterparts. Following these researchers, the use of the imperfective stem, instead of its perfective counterpart, as the base from which the APs are derived is tested in the present study.

1.2. Significance of the Study

The significance of the present piece of research derives from the fact that it employs a relatively recent innovation in generative phonological analysis, viz. the autosegmental approach, that no other studies have applied to the examination of the phonological processes that APs undergo throughout their derivation. That is, despite the fact that many studies analyzed the derivation of APs, none of these studies conducted their analyses within an autosegmental framework. The autosegmental approach is considered an important approach to phonology because it overcomes various theoretical and empirical inadequacies of a dominant theory, viz. generative phonology, in the field of linguistics. It is significant to assess the adequacy of this approach in accounting for various phonological processes that take place in MSA; especially that some of its aspects are proposed specifically for the analysis of the unique characteristics of the Semitic family but are not exhaustively examined on a corpus of one of its main members. Premising the analysis on the modifications introduced to the classical analysis of Arabic phonology adds further importance to the study (cf. Aniis, 1975; Shahiin, 1980; Abdo, 2010). Furthermore, the studies that explore the phonology of Arabic do not generally rely on corpora for their analyses, rather these studies provide examples in support of their arguments which might affect the comprehensiveness and thoroughness of the analyses. Accordingly, present study aims at bridging a gap
in the literature by employing the autosegmental approach of phonology for the analysis of an AP corpus which is built from a modern corpus-based dictionary.

2. Method

2.1. Data Collection

The first stage of the research involves building a corpus of APs from a well-established Arabic dictionary, namely $m u^{c} d \zeta a m$ Palluyah Pal'arabijjah Palmu'ca:sirah 'Dictionary of Modern Arabic Language'. This dictionary (a four-volume work) is compiled by a large group of trained researchers lead by Omar in 2008 to cover the majority of words used in modern-day Arabic. One of the main goals of the dictionary compilers is avoiding the shortcomings of the pre-existing dictionaries. These shortcomings include mixing obsolete and common words in addition to excluding the new ones; building on earlier lexicographic work without conducting thorough examinations and failing to provide relevant morphological and semantic information (Omar, 2008). The dictionary is compiled from various written and auditory sources of MSA such as contemporary newspapers, news and news commentary programs, grammar books and dictionaries, children's stories and prominent publications on literature, psychology, law, economy, philosophy, history, arts, environment, technology, education, sports, science, etc.

The data from these sources are assembled in a corpus that contains more than one hundred million words. The large corpus is processed and analyzed statistically to include the common words in the dictionary and exclude the uncommon ones. The corpus-based monolingual dictionary, viz. mu ${ }^{c} d 3 a m$ Palluyah Pal ${ }^{c}$ arabijijah Palmuca:sirah, is meant for the general user of the language and thus it contains words of general use that represent various spheres of life. This dictionary provides morphological and semantic information on the words it defines as well as plenty of illustrative examples of the contexts in which the different senses of these words are used.

The 32.300 alphabetized dictionary entries are grouped under 5.778 consonantal roots and are dedicated for verbs (10.475), nouns (21.457) and function words (368). Since the APs are derived from verbs, they are listed under verbal entries. The APs that are derived from triconsonantal weak verbs (form I) are listed in a corpus. The corpus contains 620 APs which are categorized, in accordance with the position of the glide in their stems, into initially, medially, finally and doubly weak APs. These are presented in Appendix (A), Appendix (B), Appendix (C), Appendix (D), respectively. It should be noted that the APs that have the same form are listed under separate entries in the corpus if they have different meanings (e.g. ja:min 'blessed' and ja:min 'turning right') or if they are derived from different imperfective verbs (e.g. the AP wa:biq 'perished' can be derived from the stems of the imperfective verbs $j a-b i q$ or $j a-w b a q)$.

2.2. The Approach

Autosegmental phonology is a non-linear approach to generative phonology proposed for overcoming the inadequacies of its linear counterpart. One of the main proposals of this approach is splitting the linear phonological representation into several tiers. These tiers consist of groups of autosegments and they are ordered independently of each other but are interconnected by means of association lines (McCarthy, 1982). The autosegmental structure of representation is originally proposed to handle suprasegmental features and thereafter its empirical domain is extended to various phonological areas.

CV phonology is an autosegmental model designed by Clements and Keyser (1983) to represent the internal structure of syllable. This representation is composed of three tiers, i.e. the syllable node, CV and segmental tiers. The three-tier hierarchical structure of the syllable /men/ is employed as an illustrative example below:

An advantage to utilizing distinct tiers for the characterization of the syllable structure is that the quantity of a segment can be referred to independently of its quality. In this regard, Spencer (1996) maintains that the CV tier is the level at which the quantity of a segment is represented, whereas its quality is described at the segmental tier. He refers to these tiers as the timing tier and melody tier, respectively. Employing these independent tiers facilitates accounting efficiently for the discrepancies between the quantity and quality of segments. To make this possible, a set of association conventions are used for connecting elements on these tiers.

Two of the major association conventions are the no-crossing constraint and the obligatory contour principle (OCP). The former prohibits the crossing of association lines and the latter prohibits identical adjacent segments at the segmental tier (Goldsmith, 1976). Adhering to these conventions allow accounting for cases in which the association between tiers is not formed in a one-to-one fashion. An example of a one-to-many association pattern is exemplified by complex segments, while a many-toone association between the CV tier and the segmental tier is found in the representation of long segments. Instances of the two types of association are presented, respectively in 3:
3. a.

b.

Providing an accurate account of the internal structure of segments is not the only advantage of CV phonology. Another key advantage of this model is that it utilizes a purely phonological unit, viz. the syllable, for the statement of phonological rules and phonotactic constrains. Accordingly, various phonological rules, such as consonantal deletion and vocalic epenthesis, are found to receive natural and simple notations because they are formulated in terms of the syllable notion (cf. Kenstowicz, 1994; Spencer, 1996).

The development of CV phonology involves introducing some modifications to this model. One of these modifications is based on considering the distinction between the C and V elements on the CV tier redundant and arguing that these elements are to be replaced with empty uniform positions labelled as X slots (Levin, 1985). A major impetus for the development of the X -slot model is ascribed to observing that C elements can be associated with vowels and V elements can be mapped to consonants. An example of this observation is found in the analysis of the frequent phonological process of compensatory lengthening. This process involves the lengthening of a segment triggered by the deletion an adjacent segment (Clements \& Keyser, 1983).

Hayes (1989, pp. 260-261) cites an example from Latin where "the segment /s/ was deleted before anterior sonorants." When the deleted $/ \mathrm{s} /$ followed a vowel, the vowel was lengthened in compensation. For instance, the deletion of the $/ \mathrm{s} /$ in the Latin word kasnus 'grey' causes the lengthening of its preceding vowel ka:nus. Within autosegmental phonology, the autonomy given for elements that occupy different tiers enables providing a straightforward account of the compensatory lengthening process.

That is, the deletion of the $/ \mathrm{s} /$ takes place only on the segmental tier which leaves its C element, or timing slot, empty (ibid, p. 261). The empty timing slot spreads to the vowel that precedes the deleted /s/ forming the long vowel /a:/.

Despite that fact that compensatory lengthening lends itself to being analyzed within the autosegmental approach, the CV model of this approach faces a challenge in the analysis of this process. The challenge is that the empty timing slot was attached to the consonant $/ \mathrm{s} /$ and thus it is assumed to be specified as [+consonantal]. Spreading an empty C slot to a vowel melody is problematic. To resolve this problematic issue, the C and V slots are replaced with X slots unspecified for the feature [\pm consonantal]. An X-slot analysis of the compensatory lengthening of the /a/ sound in the Latin word $k a: n u s$ is adopted from Hayes (1989, p. 261) and used as an illustrative example below:

3. Results and Discussion

In line with Al-Faxiri (1996), Abd Al-Ghani (2010), Al-Samurrai (2013), among others, the analysis of the current AP corpus reveals that all the 620 instances of the APs which are derived from weak imperfective verbs (form I) are on the pattern $\left|\mathrm{C}_{1} \mathrm{a}: \mathrm{C}_{2} \mathrm{i}_{3}\right|$. Accordingly, the present analysis of the derivation of the APs is restricted to the pattern $\left|\mathrm{C}_{1} \mathrm{a}: \mathrm{C}_{2} \mathrm{C}_{3}\right|$. Table 3 below presents the frequencies of the initially, medially, finally and doubly weak APs that are analyzed in this study.

Table 3. The Frequencies of the Four Types of APs

APs of the pattern	Initially-	Medially-weak	Finally-weak	Doubly-weak	Total
$\left\|\mathrm{C}_{1} \mathrm{a}: \mathrm{C}_{2} \mathrm{CC}_{3}\right\|$	weak APs	APs	APs	APs	
Frequencies	99	264	230	27	620
Percentages	16%	42.6%	37%	4.4%	100%

As can be shown in Table 3, the most frequent AP type is the medially-weak which constitutes 42.6% of the AP corpus. It is followed by the finally-weak type which accounts for 37% then the initially-weak type which accounts for 16% and finally the doubly-weak type which accounts for 4.4%. The following sections attempt to analyze these four types of APs starting with the imperfective stems from which they are derived.

3.1. Initially-Weak Aps

3.1.1. The Imperfective Stems of Initially-Weak APs

Form I of initially-weak imperfective stems from which APs on the pattern $\left|\mathrm{C}_{1} a: \mathrm{C}_{2} \mathrm{C}_{3}\right|$ are derived have the underlying representation $\left|\mathrm{GC}_{2} \mathrm{VC}_{3}\right|$. The first radical in these stems, i.e. the glide, can be a $/ \mathrm{w} /$ or a $/ \mathrm{j} /$. Mahadin (1982) argued that the majority of initially-weak imperfective stems begin with a/w/ and a very few of them begin with a $/ \mathrm{j} /$. According to him, the initially-weak imperfective stems that begin with the $/ \mathrm{w} /$ have the following surface representations:
5. a. $\left|\mathrm{C}_{2} \mathrm{iC}_{3}\right|$ (e.g. ja-sil 'he arrives')
b. $\left|\mathrm{wC}_{2} \mathrm{uC}_{3}\right|$ ('e.g. ja-wfur 'it is abundant')
c. $\left|\mathrm{wC}_{2} \mathrm{aC}_{3}\right|$ (e.g. ja-wdzal 'he is scared')
d. $\left|\mathrm{C}_{2} \mathrm{aC}_{3}\right|$ (e.g. ja-da ${ }^{\mathbf{c}}$ 'he puts')

As can be noted, the $/ \mathrm{w} /$ is deleted in the imperfective stems which are shown in (a) and (d). Mahadin (1982) and Brame (1970) argued that the glide /w/ is deleted when the stem vowel is $/ \mathrm{i} /$ and it remains when the stem vowels are $/ \mathrm{u} /$ or $/ \mathrm{a} /$. The w -deletion rule is stated as follows:

$$
\begin{aligned}
& \text { 6. } \left.\mathrm{w} \rightarrow \emptyset / \mathrm{Ca} \#--\mathrm{C}_{2} \mathrm{iC}_{3}\right] \quad[+\mathrm{B}-\text { verbs] }(\#=\text { morpheme boundary },+\mathrm{B}=\text { basic }) \\
& \text { [personal prefix] }
\end{aligned}
$$

The w-deletion rule stipulates that the $/ \mathrm{w} /$ is deleted when it is preceded by a personal prefix, in this case the third person masculine prefix ' ja ' and followed by a $\left|\mathrm{C}_{2} \mathrm{C}_{3}\right|$ sequence. The rule only applies to basic, i.e. non-derived or form I, verbs when their stem vowel is /i/. Mahadin (1982) and Brame (1970) argued that the deletion of the glide $/ \mathrm{w} /$ in some of the imperfective stems that have the stem vowel $/ \mathrm{a} /$ does not contradict the w-deletion rule. This is attributed to the assumption that the stem vowel of the imperfective forms that are exemplified in (d) is originally /i/ but it becomes/a/ through the application of the laryngeal-assimilation rule.

This rule requires changing the vowel $/ \mathrm{i} / \mathrm{into} / \mathrm{a} /$ in non-derived imperfective stems when it is adjacent to a laryngeal, where laryngeal includes "those sounds produced in the area extending from the larynx to the upper regions of the pharynx" (Brame, 1970, p. 159). As can be noted from the definition, the term laryngeal encompasses not only the laryngeals but also the pharyngeal and uvular sounds. Accordingly, the laryngeal assimilation rule, as stated in 7 below, is assumed to apply to these three categories of sounds which are subsumed under the guttural category in the present analysis and it is consistent with the lowering effect this category of sounds has on adjacent vowels (cf. McCarthy, 1994).

The w-deletion and the laryngeal assimilation rules apply in an ordered sequence to the imperfective stems that are exemplified in (d). The former rule deletes the $/ \mathrm{w} /$ from imperfective verbs of the pattern $|\mathrm{ja}-\mathrm{wCiL}|$ or $|j \mathrm{ja}-\mathrm{wLiC}|\left(e . g . j a-w d i^{c} \rightarrow j a-\underline{d} i^{c}\right.$ 'he puts') because they meet the deletion conditions. After the deletion of the $/ \mathrm{w} /$, the latter rule applies to $|\mathrm{ja}-\mathrm{CiL}|$ or $|\mathrm{ja}-\mathrm{LiC}|$ and changes the stem vowel $/ \mathrm{i} / \mathrm{to} / \mathrm{a} /$ because it is adjacent to a laryngeal (e.g. $j a-\underline{d} i^{i} \rightarrow j a-\underline{d} a^{c}$). As for the non-derived imperfective stems which begin with the glide $/ \mathrm{j} /$, they are always on the pattern $|\mathrm{ja}-\mathrm{jCVC}|$ which indicates that the glide $/ \mathrm{j} /$ is not subjected to the deletion rule which affects its counterpart, i.e. the $/ \mathrm{w} /$ (e.g. ja-j? ${ }^{\text {'as 'he loses hope') }}$ (Mahadin, 1982).

One can conclude from the analysis of form I of the imperfective stems from which initially-weak APs are derived that all of them share the underlying pattern $\left|\mathrm{GC}_{2} \mathrm{VC}_{3}\right|$ and that the deletion of the glide in some of their surface representations is ascribed to the application of certain phonological processes. Accordingly, all of the initially-weak APs in the present analysis are assumed to be derived from bases on the pattern $\left|\mathrm{GC}_{2} \mathrm{VC}_{3}\right|$.

3.1.2. The Derivation of Initially-Weak APs from their Imperfective Stems

In the analyses of the derivation of APs from initially-weak verbs, there is a general agreement that they are derived in much the same way as those of strong verbs (Al-Raagihi, 1984; Ryding, 2005; Abd

Al-Ghani, 2010; Al-Samurrai, 2013). The regularity of the derivation of form I APs from initially-weak verbs implies that all the radicals in the underlying representation of the verbal stem, i.e. the source of derivation, are retained in the AP form, i.e. the target of derivation.

Within the analyses that adopted the insights of classical Arabic grammarians, the derivation of the AP (form I) from initially-weak verbs, akin to its derivation from strong verbs, merely involves placing the perfective verb (form I) on the pattern $\left|\mathrm{C}_{1} \mathrm{a}: \mathrm{C}_{2} \mathrm{iC}_{3}\right|$ (e.g. the perfective verb wad3ad 'he found' is placed on this pattern to derive its AP form wa:dzid 'a finder'). A more intricate analysis of this derivation process is carried out by Brame (1970) who argued, on the basis of the hypothesis that there are no long vowels in the underlying level of representation in Arabic, that the long vowel /a:/ does not exist in the underlying representation of the pattern $\left|\mathrm{C}_{1} \mathrm{a}: \mathrm{C}_{2} \mathrm{iC}_{3}\right|$, rather it only appears in its surface representation. He maintained that the derivation of APs on the pattern $\left|\mathrm{C}_{1} \mathrm{a}: \mathrm{C}_{2} \mathrm{iC}_{3}\right|$ entails the infixation of /wa/ into the perfective stem.

The infixation of /wa/ to the perfective stem produces the form $\left|\mathrm{CawaC}_{2} \mathrm{iC}_{3}\right|$ (e.g. wadzad 'he found' wawadzid). The $/ \mathrm{w} /$ in the form $\left|\mathrm{CawaC}_{2} \mathrm{iC}_{3}\right|$ occurs in intervocalic position which triggers its deletion by the application of the glide elision rule (wawadzid \rightarrow waadzid). Afterwards, the two adjacent /a/ vowels in $\left|\mathrm{CaaC}_{2} \mathrm{iC}_{3}\right|$ are combined into a single long vowel through the application of a lengthening rule (waadzid \rightarrow wa:dzid). The /wa/-infixation, the glide elision and the lengthening rules are, respectively, stated in 8 below:
8. a- wa [CVX \rightarrow [CVwaX

$$
\begin{aligned}
& \text { b- } G \rightarrow \emptyset / V_{i} _V_{j}, \text { if } j=[+ \text { low }], i=[+ \text { low }] \\
& c-V_{i} V_{i} \rightarrow V_{i}:
\end{aligned}
$$

Brame (1970) asserted that the infixation of /wa/ in the course of the derivation of APs (form I) is plausible because the derivation of all the forms of the participles, whether they are active or passive, requires attaching a prefix to the verbal stem. The underlying representation of the participle prefix is $/ \mathrm{ma} /$ which is turned into $/ \mathrm{mu} /$ in the derived forms, i.e. forms other than form I , of the participles and turned into /wa/ when used as an infix. The rules that stipulate alternating $/ \mathrm{ma} / \mathrm{into} / \mathrm{mu} / \mathrm{or} / \mathrm{wa} /$ are given below:
9. $\mathrm{a}-\mathrm{ma} \rightarrow \mathrm{mu} /[+$ derived]
b- ma $[\mathrm{CVX} \rightarrow \mathrm{CVmaX} \rightarrow \mathrm{CVwaX}$
Brame (1970) proposed that the glide /w/ is part of APs (form I) affix because it surfaces in some of the forms to which the affix is added. This proposal is considered plausible by Mahadin (1982) who established that the affixes which are added to modify the meaning of the basic stem should have the shape of the syllable, i.e. $|\mathrm{CV}|$, and not of a single segment.

Changing the affix /wa/ to the long vowel /a:/ can be accounted for straightforwardly if the imperfective stem is employed as the base of derivation. That is, the imperfective stems have underlying representations of the shape $\left|\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{VC}_{3}\right|$ in which there is no vowel between their first and second consonants. As mentioned in Section 1, the syllables that begin with a cluster of two consonants are not permissible in MSA. For this reason, the imperfective stem can never surface without a personal prefix of the shape $|\mathrm{CV}|$. The addition of a $|\mathrm{CV}|$ prefix to the imperfective stem results in the re-syllabification of the stem by placing its first consonant in the coda position of the first syllable and its second consonant in the onset position of the second syllable. The resultant sequence, i.e. $\left|\mathrm{CVC}_{1}-\mathrm{C}_{2} \mathrm{VC}_{3}\right|$, is composed of two permissible syllables and thus it can appear as a surface representation (e.g. jak-tub 'he writes').

Infixing the /wa/, or any affix with a $|\mathrm{CV}|$ shape, to an imperfective stem to derive to its AP form causes the creation of a cluster of two consonants in the onset position of the syllable $\left|\mathbf{C}_{1} \mathbf{w a C} \mathbf{C}_{2} \mathrm{VC}_{3}\right|$. This triggers the application of a deletion rule which deletes the $/ \mathrm{w} /$ and the lengthens its adjacent vowel in
compensation (cf. Section 2.2). In the adopted model of autosegmental phonology, the representation of the deletion and the compensatory lengthening, as depicted in 10 , involves deleting the $/ \mathrm{w} /$ melody from the segmental tier and spreading its empty X-slot to its following vowel.
10.

C w a
In addition to the insertion of the $/ \mathrm{wa} /$ infix between the first and second consonant, another modification to the imperfective stem to derive its AP form is changing the stem vowel, which might be an $/ \mathrm{a} /$, $/ \mathrm{u} /$ or $/ \mathrm{i} /$, to $/ \mathrm{i} /\left(\mathrm{C}_{1} \mathrm{C}_{2}\left\{\begin{array}{l}\mathbf{a} \\ \mathbf{u} \\ \mathbf{i}\end{array}\right\} \mathrm{C}_{3} \rightarrow \mathrm{C}_{1} \mathrm{C}_{2} \mathbf{i C}_{3}\right)$. This requires the application of an ablaut rule, i.e. a rule that involves systematic alterations in the stem vowel to indicate modifications of meaning or inflectional information, which changes the features of the stem vowel to [+high] and [-rounded]. As can be noted, the application of the compensatory lengthening and the ablaut rules need not to be ordered because neither of these rules affects the other.

The derivation of the 99 initially-weak APs in the analyzed corpus, as shown in Appendix (A), from their imperfective stems show no deviation from the general pattern. For instance, the derivation the AP form wa: ${ }^{c} i \underline{\delta}$ 'a preacher' from $w^{c} i \underline{\partial}$, i.e. the underlying representation of the stem of the imperfective verb $j a$ - ${ }^{c} i \underline{\partial}$ 'he preaches', involves infixing the $/ \mathrm{wa} /$ between the $/ \mathrm{w} /$ and $/ \%$, i.e. its first and second consonants, respectively. Afterwards, the /wa/ is changed to /a:/ through the application of the compensatory lengthening process. As for the ablaut rule that changes the stem vowel to $/ \mathrm{i} /$, there is no need for its application because the stem vowel of the verb $j a-{ }^{c} i \underline{d}$ is already /i/. The derivation of wa: ${ }^{c} i \underline{d}$ from its imperfective stem is shown in 11 below:

3.2. Medially-Weak APs

3.2.1. The Imperfective Stems of Initially-Weak APs

The surface representations of medially-weak imperfective stems are on the pattern $\left|\mathrm{C}_{1} \mathrm{~V}: \mathrm{C}_{3}\right|$. This pattern is composed of two consonants and a long vowel and hence these stems are apparently biconsonantal. Based on the hypotheses that there are no long vowels in MSA underlying representations and that weak stems have the same structures as those of the strong stems, the medially-weak imperfective stems have underlyingly a pattern that resembles their strong counterparts, i.e. $\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{VC}_{3} \mid$. The second consonant of these stems is generally assumed to be a glide that surfaces as a vowel due to its susceptibility to various phonological process (cf. Brame, 1970; Levy, 1971). Even though the glide does not exist in form I of the imperfective verb, it exists in the derived forms of the verb (e.g. ja-xa:f 'he fears' (form I) and ju-xawwif 'he causes someone to fear' (form II)). Accordingly, all the mediallyweak imperfective stems have the underlying shape $\left|\mathrm{C}_{1} \mathrm{GVC}_{3}\right|$ which surfaces as $\left|\mathrm{C}_{1} \mathrm{~V}: \mathrm{C}_{3}\right|$ through the application of certain phonological processes.

Brame (1970) accounted for the surface representation of medially-weak imperfective stems by proposing a glide metathesis rule which applies to the sequence CGVC and metathesizes the glide and the stem vowel (e.g. $j a-{ }^{c} \boldsymbol{w} \boldsymbol{u} \boldsymbol{d} \rightarrow j a-{ }^{c} \boldsymbol{u} \boldsymbol{w} \boldsymbol{d}$). After the application of this rule, an assimilation rule applies to the sequence CVGC and assimilates the glide to its following vowel (e.g. ja- ${ }^{c} \boldsymbol{u} \boldsymbol{w} \boldsymbol{d} \rightarrow j a a^{c} \boldsymbol{u} \boldsymbol{u} \boldsymbol{d}$). Finally, the two short identical vowels in the resultant sequence $\mathrm{CV}_{\mathrm{i}} \mathrm{V}_{\mathrm{i}} \mathrm{C}$ are combined into a single long vowel by the application of a vowel lengthening rule ($j a{ }^{-}{ }^{c} \boldsymbol{u} \boldsymbol{u d} \rightarrow j a-{ }^{c} \boldsymbol{u}: \boldsymbol{d}$). The glide metathesis, assimilation and lengthening rules are, respectively, stated in 12.
12. a. $\mathrm{CGVC} \rightarrow \mathrm{CVGC}$
b. $\mathrm{CVGC} \rightarrow \mathrm{CV}_{\mathrm{i}} \mathrm{V}_{\mathrm{i}} \mathrm{C}$
c. $\mathrm{ViVi} \rightarrow \mathrm{Vi}$:

Mahadin (1982) regarded Brame's (1970) analysis as being partially incorrect because of its inability to account for the $|\mathrm{aG}|$ sequence. This is ascribed to the permissibility and as such the general stability of the $|\mathrm{aG}|$ sequence, as opposed to the $|\mathrm{uG}|$ and $|\mathrm{iG}|$ sequences, in Arabic. This can be manifested in the facts that the only two diphthongs in Arabic have the $|\mathrm{aG}|$ shape, i.e. /aj/ and /aw/, and that the $|\mathrm{aG}|$ sequence does not undergo Brame's (1970) assimilation rule in finally-weak verbs (e.g. ramayna 'we threw') and in the verbal nouns with the shape $|\mathrm{CVGC}|$ (e.g. the /aj/ and/aw/ sequences are stable in the verbal nouns xawf 'fear' and bajc 'selling').

Mahadin (1982) proposed another rule to account for the surface representation of medially-weak verbs in Arabic. This rule, as shown in 13, applies to the sequence $|\mathrm{CGV}|$ when it is preceded by a morpheme boundary (\#), such as the morpheme boundary of the personal prefix $/ \mathrm{j} a /$ in ja\#\# wud 'he comes back', and causes the assimilation of the glide to its following vowel which results in the sequence $\left|\mathrm{CV}_{\mathrm{i}} \mathrm{V}_{\mathrm{i}}\right|$. The assimilation rule is followed by the vowel lengthening rule which is stated in 12 (c).
13. $\# \mathrm{CGV}_{\mathrm{i}} \rightarrow \mathrm{CV}_{\mathrm{i}} \mathrm{V}_{\mathrm{i}}$ (\# designates morpheme boundary)

As can be noticed, this assimilation rule only applies to the $|\mathrm{CGV}|$ and not to metathesized $|\mathrm{CVG}|$ and this prevents its application to the stable $|\mathrm{aG}|$ sequence. Moreover, Mahadin $(1982,255)$ maintained that specifying the conditioning environment of the rule prevents it from applying to the finally-weak verbs and verbal nouns in that the two of them are not preceded by morpheme boundary. He further asserted that this assimilation rule also applies to various forms of nouns such as the nouns of place ma\#tyar and ma\#qwam which surface as ma\#ta:r 'airport' and ma\#qa:m 'site', respectively (ibid, 256).

The rule that is proposed by Mahadin (1982) accounts for cases where the glide assimilates to its cognate vowels, i.e. the assimilation of the $/ \mathrm{w} /$ and $/ \mathrm{j} /$ to the $/ \mathrm{u} /$ and $/ \mathrm{i} /$, respectively, but it faces problems in accounting for the assimilation of the glide to its non-cognate vowel, e.g. the assimilation of the $/ \mathrm{w} /$ to the $/ \mathrm{a} /$. This is ascribed the general assumption that the source and the target of assimilation processes should be phonetically similar (cf. Kenstowicz, 1994; Spencer, 1996). A straightforward analysis of the surface forms of medially-weak stems can be provided if the X-slot model of autosegmental phonology is adopted. That is, the glide in the sequence $\left|\# \mathrm{CGV}_{\mathrm{i}}\right|$ undergoes a glide elision process, instead of the glide assimilation process, and its adjacent vowel is lengthened in compensation. The statement of this process in the X -slot model of phonology is depicted in 14.

3.2.2. The Derivation of Medially-Weak APs from their Imperfective Stems

In contrast to the derivation of the $\left|\mathrm{C}_{1} \mathrm{a}: \mathrm{C}_{2} \mathrm{C}_{3}\right|$ pattern from initially-weak verbs which resembles its derivation from strong verbs, this pattern shows some modifications when it is derived from mediallyweak verbs. Traditional Arab linguists, such as Ibin Jinni, 1954; Sibawayh, 1982 and Ibin Asfor, 1987, and the researchers who followed their leads, such as Al-Raagihi, 1984; Al-Faxiri, 1996; Abd Al-Ghani, 2010 and Al-Samurrai, 2013, argued that the medially-weak perfective verbs from which the APs are assumed to be derived generally have the letter Palif, which corresponds to the long vowel /a:/, as their second radical (e.g. ba: ' 'he sold'). The Palif is substituted with the glottal stop / / / when these verbs are placed on the pattern $\left|\mathrm{C}_{1} \mathrm{a}: \mathrm{C}_{2} \mathrm{C}_{3}\right|$ to derive their AP forms (e.g. the Palif of the verb ba: ' 'he sold' is realized as $/ \mathrm{Z} /$ when it is placed on the pattern $\left|\mathrm{C}_{1} \mathrm{a}: \mathrm{C}_{2} \mathrm{C}_{3}\right|$ to derive the AP $b a: \mathrm{Pi}^{c}$ 'a seller').

Brame (1970) contended that the APs (form I) are expected to retain the three consonants, or radicals, of their medially-weak perfective bases. However, one of these radical, i.e. the second one which is originally a glide, is substituted with a glottal stop in the surface representation of these APs (e.g. the APs sa:wid and za:jid surface as sa:Pid 'prevailing' $z a$:Pid 'increasing' by inserting a glottal stop in the place of their medial glides). To account for this alternation, he proposed a rule that changes a glide to a glottal stop when it is preceded by /a:/ and followed by a short vowel and called it the glottal formation rule. The glottal formation rule is also observed to apply to a broken plural form of nouns (e.g. the plural form of dari:batun 'a tax' surfaces as dara:Pibun 'taxes' instead of dara:jibun due to changing the $/ \mathrm{j} /$ which occurs between /a:/ and a short vowel into the $/ \mathrm{P} /$). This rule is given in 15 .

15. $\mathrm{G} \rightarrow \mathrm{P} / \mathrm{a}: _\mathrm{V}$

Abdo (2010) assumed that the glottal stop $/ Z /$ is infixed after the first stem vowel in these AP forms (e.g. qawil \rightarrow qaPwil). Subsequently, a glide metathesis rule switches the position of the infixed $/ P /$ and its following glide (qaPwil \rightarrow qawPil). The glide metathesis is followed by an assimilation rule that assimilates the glide to its preceding vowel (qaw?il \rightarrow qaaPil). Finally, a vowel lengthening rule combines the two identical adjacent vowels into a single long one (qaaPil \rightarrow qa:Pil 'a teller').

A problematic issue in these analyses is that the /a:Gi/ sequence in medially-weak APs surfaces in other nominal and verbal forms without undergoing any phonological processes. Examples of these forms are presented in 16 .
16. a. ju-qa:wim 'he resists' (imperfective verb)
b. qa:jid 'trade' (imperative verb)
c. mu-qa:wil 'a contractor' (active participle)

Even though the alternation between glides and the glottal stop is stated as a general rule, the examples of this alternation are only drawn from two forms (cf. Ibin Jinni, 1954; Brame, 1970; Sibawayh, 1982; Ibin Asfor, 1987; Al-Nuri, 2007). The first is the AP (form I) and second is the broken plural form on the pattern $\left|\mathrm{C}_{1} \mathrm{aC}_{2} \mathrm{a}: \mathrm{C}_{3} \mathrm{iC}_{4}\right|$. One can argue, in line with Brame (1970), that the infixed /a:/ in these two forms is underlyingly $/ \mathrm{wa}$. Based on this argument, the underlying pattern of the mediallyweak APs and the broken plural form are $|\mathrm{CwaGiC}|$ and $\left|\mathrm{C}_{1} \mathrm{aC}_{2} \mathrm{waGiC}_{4}\right|$, respectively.

In both of these patterns, the glide occurs between two short vowels and this triggers its deletion by the glide elision rule which is stated 8 (b). The deletion of the glide results in making its syllable onsetless. Because onsetless syllables are not allowed in MSA, a prosthetic glottal stop is inserted to function as the onset of the onsetless syllable (cf. Abu Salim, 1988; Żygis, 2010). The representation of the derivation of medially-weak APs from their imperfective stems in the X-slot model of autosegmental phonology is exemplified by the AP qa:Pim 'standing' which is shown in 17.

As can be shown in 17, the underling representation of the stem of the imperfective verb ja-qu:m 'he stands up' is qwum. The derivation of its AP form requires inserting the infix /wa/ between its first and second consonants and alternating its stem vowel into $/ \mathrm{i} /$. The second $/ \mathrm{w} /$ in the resultant sequence, i.e. qwawim, occurs between the two short vowels /a/ and /i/ and thus it is subjected to the glide elision rule. The deletion of $/ \mathrm{w} /$ causes the production of an onsetless syllable which triggers the application of a
glottal epenthesis process. Finally, the $/ \mathrm{w} /$ in the sequence qwarim is deleted to avoid violating the constrain on complex onsets in MSA syllable structure and its empty X-slot spreads to its following vowel which yields the surface representation qa:Pim 'standing'.

The 264 medially-weak APs, as presented in Appendix (B), that are analyzed in the current study are found to be regularly derived following this pattern except for six, which are shown in Table 4. It should be noted that these six AP forms are listed in the current corpus in the pattern |Ca:Pin| instead of |Ca:Pi:| because the nominative or genitive case markers and the indefinite suffix $/ \mathrm{n} /$ are attached to the forms that end with a long vowel in the dictionary from which the current corpus is built (see Section 3.3.2).

Table 4. Medially-Weak APs which Deviate from the Derivational Pattern

Dictionary number	entry	Consonantal root	Imperfective verb	Gloss	Active participle
804		b w ?	ja-bu:?	to deserve	ba:Pin
3151		d w ?	ja-du:?	to be lightened up	da:Pin
3902		fj ?	ja-fi:?	to return	fa:?in
4148		qj ?	ja-qi:?	to vomit	qa:?in
5265		n w ?	ja-nu:?	to burden	na:Pin
5492		hj ?	ja-ha:?	to look good	ha:Pin

As can be observed from Table 4, the imperfective verbs of these APs end with a glottal stop. The insertion of a glottal stop in the course of deriving their AP forms results in the sequence $|\mathrm{Ca}: \mathrm{ii}|$ which has a glottal stop as its second and third radicals. The sequence |Ca:Pii| surfaces as |Ca: ii:|. The surface representation of this sequence is consistent with Sibawayh (1982) who argued that adjacent glottal stops are not allowed in SA. In the current model of analysis, one can simply postulate that the second $/ 2 /$ is deleted in accordance with the OCP and its preceding vowel is lengthened in compensation, as depicted in
18.

Accounting for the alternation of the / $\mathrm{Pi} /$ / sequence into / $\mathrm{Pi}: /$ is only possible in the X -slot model of autosegmental phonology. This is ascribed to the observation that the $/ \mathrm{P} /$ is not phonetically similar to the /i/ and thus it cannot assimilate to it which leaves its deletion as the only option for avoiding the adjacency of glottal stops. The deletion of a segment in the standard approach of phonology entails eliminating both its quantity and quality. On the other hand, the deletion of a segment within autosegmental phonology only takes place on the segmental tier, which represents the quality of segments, which leaves its quantity, represented in the CV tier or X-tier, intact and capable of spreading to its adjacent segment.

Moreover, utilizing the X -slot model of autosegmental phonology instead of the CV model of this approach for the representation of this instance of compensatory lengthening is attributed to the fact that the quantity, or timing, slots in the former model are not specified for the feature [\pm consonantal]. This enables accounting for the compensatory lengthening cases which are triggered by the deletion of a consonant and the lengthening of its adjacent vowel in compensation (see Section 2.2).

3.3. Finally-Weak Aps

3.3.1. The Imperfective Stems of Finally-Weak APs

The surface representations of finally-weak verbs are on the pattern $\mid \mathrm{C}_{1} \mathrm{C}_{2} \mathrm{~V}$:|. The long vowel in the pattern $\mid \mathrm{C}_{1} \mathrm{C}_{2} \mathrm{~V}$:| appears as /u:/ (e.g. ja-ndзu: 'he survives'), /i:/ (e.g. ja-bri: 'he sharpens'), /a:/ (e.g. $j a r q a$: 'he advances'), or alternative /a:/ and /i:/ (ja- $\gamma \theta a$: and $j a-\gamma \theta i$: 'he talks a lot'). Proposing that the underling representation of finally-weak imperfective verbs, as well as the other weak imperfective verbs, is identical to those of their strong counterparts, requires identifying the phonological processes that change their underling representation, i.e. $\left|j a-\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{VG}\right|$, to their surface representation, i.e. |ja$\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{u}: \mid$. In this regard, Mahadin (1982) observed that most of the changes to the underling representations of finally-weak verbs are triggered by the interaction between their stems and the suffixes that are attached to them. He maintained that the third radical of finally-weak verbs, i.e. the glide, is regularly deleted when these verbs inflect for their indicative case. The deletion is caused by the glide elision rule, as stated in 8 (b), which takes place when a glide occurs between two vowels VGV, except for when the first vowel is high and the second is low, i.e. uGa and iGa .

For instance, the addition of the indicative case suffix $/ \mathrm{u} /$ to the imperfective verb $j a-d^{c} u w$ 'he invites' causes the occurrence of the glide /w/ between two high vowels, i.e. |uGu|, which triggers its deletion by the glide elision rule. Subsequently, the two identical short vowels become one long vowel by the application of the vowel lengthening rule which is stated in 12 (c). The application of these phonological processes changes the underlying representations of the imperfective verb $j a-d^{c} u w$ to its surface representation, i.e. $j a-d^{c} u$: 'he invites, indicative case'.

On the other hand, the addition of the subjunctive case suffix /a/ to $j a-d^{c} u w$ places the glide $/ \mathrm{w} /$ between the high vowel $/ \mathrm{u} /$ and the low vowel $/ \mathrm{a} /$. The sequence $|\mathrm{uGa}|$ does not undergo the glide elision rule and thus this imperfective verb surfaces as $j a-d^{c} u w a$ 'he invites, subjunctive case'. The addition of the subjunctive case suffix does not always result in retaining the glide of finally-weak verbs. For example, inflecting the imperfective verb ja-lqaj 'he encounters' for the subjunctive case results in the sequence ja-lqaj-a. Because the glide $/ \mathrm{j} /$ in this sequence occurs between two short low vowels, it undergoes the glide elision rule. After application the glide elision, the two adjacent/a/vowels are combined into the long vowel /a:/ which results in the surface representation ja-lqa: 'he meets, subjunctive case'.

As for the imperfective verbs that have non-identical stem and case vowels, a vowel assimilation rule is to be posited between the glide deletion rule and the lengthening rule to enable their derivation. This can be demonstrated by inflecting the imperfective verb ja-rmiy 'he throws' for the indicative case which produces ja-rmiy-u. The application of the glide elision rule to this sequence leads to the existence of the two adjacent vowels /iu/. Apparently, these two vowels are not identical and hence they cannot be contracted into a single long vowel. The /iu/ vowel cluster is not allowed because two vowels cannot occupy the same nucleus position and if each of these vowels is assumed to constitute its own syllable, then the second syllable becomes onsetless which is not allowed in Arabic. According to Mahadin (1982, 234), the /iu/ cluster undergoes a vowel assimilation rule in which the second member of the cluster assimilates to the first member. The resultant sequence, i.e. /ii/, undergoes the vowel lengthening rule and the targeted imperfective verb surfaces as ja-rmi: 'he throws, indicative case'.

3.3.2. The Derivation of Finally-Weak APs from their Imperfective Stems

All what is mentioned about finally-weak APs in the traditional analyses of their derivation is that their third radical, i.e. the glide, when their indefinite forms are inflected for the nominative and genitive cases (e.g. ra:min 'a thrower, nominative/genitive case') and its retained when they are inflected for the accusative case (e.g. ra:mijan 'a thrower, accusative case) (Al-Faxiri, 1996; Abd Al-Ghani, 2010; AlSamurrai, 2013; among others). These analyses tend to consider the indefinite form which is declined
for the nominative/genitive case and has the surface pattern $\mid \mathrm{C}_{1} \mathrm{a}: \mathrm{C}_{2}$ in \mid as the unmarked form of finallyweak APs. Similarly, mu ${ }^{c} d z a m$ Palluyah Pal ${ }^{c}$ arabijjah Palmuca:sirah, i.e. the dictionary from which the current corpus is compiled, uses this form as the citation form of finally-weak APs as opposed to the initially and medially weak APs which are listed in it in their uninflected, i.e. pausal, forms.

The deletion of the glide in these forms was observed by Brame (1970) who found that declining the indefinite form of finally-weak APs for the nominative or genitive case results in causing their final glide to be in a position that meets the conditions of the glide elision rule. For instance, attaching the genitive case suffix to the AP $d a:^{c} i w$ yields $d a:^{c} i w-i$. The $/ \mathrm{w} /$ of this AP occurs between two short /i/ vowels and this prompts its deletion by the glide elision rule. The identical contiguous vowels in the resultant form, i.e. da: ${ }^{c} i i$, are turned into the long vowel /i:/ due to the application of the vowel lengthening rule. Attaching the indefiniteness suffix / $\mathrm{n} /$ to the surface form $d a:^{c} i$: derives the form $\mathrm{da} \cdot{ }^{c}{ }^{c}:$:n 'a caller'. This form undergoes a vowel shortening rule which shortens long vowels when they are followed by one consonant which occurs in the final position of the word. This rule, as presented in 19, causes the form $d a \cdot{ }^{\prime} i:-n$ to surface as $d a:^{c}$ in 'a caller'.

$$
\text { 19. } \mathrm{V}: \rightarrow \mathrm{V} / \ldots \quad \mathrm{C} \Psi(\Psi \text { designates the word boundary })
$$

The declination of this AP for the nominative case results in the same representation, i.e. da: ${ }^{c}$ in, but requires the application of the vowel assimilation rule after the glide elision (da: ${ }^{c} i j$-un $\rightarrow d a:^{c} i-u n \rightarrow$ $\left.d a \cdot{ }^{c}{ }^{c} i n\right)$. The removal of the indefiniteness suffix $/ \mathrm{n} /$ from $d a \cdot{ }^{c}$ in changes it to $d a:^{c} i$: 'caller' due to its failure to meet the conditioning environment for the vowel shortening rule. Finally, similar to its imperfective base, the declension of this AP for the accusative case results in retaining its final glide (da: 'ijan 'a caller, accusative case').

It should be indicated that the derivation of the uninflected forms of finally-weak APs is generally neglected in the literature since the changes to the underlying representation of these APs are, similar to their verbal bases, assumed to be stimulated by the interaction between their stems and the suffixes that are attached to them. The analysis of the derivation of the uninflected forms of finally-weak APs requires taking a closer look at their underlying representation. The underlying representation of these APs, in the current analysis, is $\left|\mathrm{C}_{1} \mathrm{waC}_{2} \mathrm{iG}\right|$ which results from inserting the infix/wa/ between the first and second consonants of the underlying representation of their imperfective stems, which are on the pattern $\left|\mathrm{C}_{1} \mathrm{C}_{2} \mathrm{VG}\right|$, and alternating their stem vowels into /i/. The glide in the pattern $\left|\mathrm{C}_{1} \mathrm{waC}_{2} \mathrm{i} G\right|$ might be a $/ \mathrm{j} /$ or a $/ \mathrm{w} /$ and thus the $/ \mathrm{iG} /$ sequences are realized as $/ \mathrm{ij} /$ or $/ \mathrm{iw} /$.

These two vowel/glide sequences are not permissible diphthongs in MSA and thus they are not allowed to occur in the same syllable. The /ij/ sequence is regularly changed to /ii/ through the application of the glide, or syllabicity, assimilation process which involves the assimilation of glides to their cognate vowels when they are preceded by these vowels (cf. Brame, 1970; Abushunar \& Mahadin 2017; among others). The glide assimilation rule, as stated in 20 (a), alternates the sequences $/ \mathrm{ij} /$ and /uw/ into /ii/ and /uu/, respectively, when these sequences occur at the end of the word or when are followed by consonants. This rule is argued to be a natural rule that reflects the facts that Arabic does not have the /ij/ and/uw/ diphthongs and that the diphthongs that it has, i.e./aj/ and /aw/, are not affected by this rule because the /a/ vowel does not have a cognate glide which assimilates to it. The application of this rule to the $/ \mathrm{ij} /$ to change it to $\mathrm{i}: /$ in the X -slot model is depicted in 20 (b).
20. a. $\left\{\begin{array}{c}\mathrm{j} \\ \mathrm{W}\end{array}\right\} \rightarrow\left\{\begin{array}{ccc}\mathrm{i} & \mathrm{i} \\ \mathrm{u} & / & \mathrm{u}\end{array}\right\}-\left\{\begin{array}{l}\mathrm{C} \\ \Psi\end{array}\right\}$

Because the stem vowel of the pattern $\left|\mathrm{C}_{1} \mathrm{waC}_{2} \mathrm{iG}\right|$ is $/ \mathrm{i}$, the surface representation of the finallyweak APs that have the glide $/ \mathrm{j} /$ as its last radical can be straightforwardly accounted for by the application of the glide assimilation rule. For instance, the application of this rule to rwamij, i.e. the underlying representation of the AP ra:mi: 'thrower', causes the assimilation of the $/ \mathrm{j} /$ to its cognate vowel /i/ and this yields rwamii. This sequence undergoes the vowel lengthening rule and surfaces as ra:mi: 'thrower'. As opposed to the surface representation of the finally-weak APs that end with the /j/, accounting for the surface representation of those that end with the $/ \mathrm{w} /$ cannot be done through the glide assimilation rule. This is ascribed to the fact the /w/ cannot assimilate to the /i/ in the sequence /iw/ because it is not its cognate vowel.

Since the assimilation rule cannot apply to the sequence /iw/ because its two members are phonetically dissimilar and the deletion of the first member of the sequence, i.e. the i /, is not possible because it constitutes the nucleus of the syllable, resolving the problem of the impermissible sequencing of the $/ \mathrm{i} /$ and $/ \mathrm{w} /$ needs to target the second member which can be done in two ways. The first way is applying a rule proposed by Brame (1970) which changes the $/ \mathrm{w} / \mathrm{into} / \mathrm{j} /$ when it is preceded by $/ \mathrm{i} /$ and applying the glide assimilation rule to the resultant sequence, i.e. /ij/. The other way, which is simpler and more economic, is deleting the $/ \mathrm{w} /$ and lengthening its adjacent vowel, i.e. the $/ \mathrm{i} /$, in compensation which yields /i:/. This can be exemplified in the alternation of the underlying representation $d w a^{c} i w$ to its surface representation $d a: c i$: 'caller' which involves, in addition to changing the infix /wa/ into /a:/, the deletion of the $/ \mathrm{w} /$ and the lengthening of the $/ \mathrm{i} /$ in compensation as presented in 21 .

As shown in 20 (b) and in 21, glide assimilation and compensatory lengthening rules produce similar surface representations in the X-slot model of phonology. However, the latter rule is considered more general because in addition to accounting for the alternations of /ij/ and /uw/ into /i:/ and /u:/, respectively, it also straightforwardly accounts for the alternations of /iw/ and /uj/ into /i:/ and /u:/, respectively. One can add that the latter rule is mainly employed in the standard approach of phonology due its inability to account for compensatory lengthening processes. Therefore, the compensatory lengthening rule is going to be used instead of the glide assimilation to account for changing impressible diphthongs to long vowels in MSA. On the grounds that compensatory lengthening follows elision rules, the conditioning environment for the glide elision in the impressible diphthongs needs to be specified. Since the permissible diphthongs in MSA are composed of the low vowel/a/ and a glide and the impermissible ones are composed of a high vowel, i.e. / $\mathrm{u} / \mathrm{or} / \mathrm{i} /$, and a glide, the glide elision in the latter
diphthongs occurs when the glide is preceded by a high vowel. Re-stating the glide assimilation rule which is given in 20 (b) as an instance of glide elision is shown in 22.
22. $G \rightarrow \emptyset / V __\left\{\begin{array}{l}\mathrm{C} \\ \Psi\end{array}\right\}$
[high]
The conditioning environments for the all the three instances of glide elision that have been discussed so far, as stated in 8 (b), 14 and 22 , are combined into one rule to form a general account of glide elision in MSA. The statement of this rule in the X-slot model of phonology is shown in 23.
23.

[high]
The surface representations of the 230 finally-weak APs which are listed in Appendix (C) are all of the pattern $\left|\mathrm{C}_{1} \mathrm{a}: \mathrm{C}_{2} \mathrm{in}\right|$. The representation of the derivation of these forms from their imperfective stems in the X-slot model of autosegmental phonology, ignoring the alternations of the infix /wa/ into /a:/ and of the stem vowel into $/ \mathrm{i} /$, is exemplified in ra:min 'a thrower, genitive case' as depicted in 24.

Two points should be indicated regarding the derivation process in 24 . The first is that if the empty X -slot, or timing slot, is not filled by the insertion of a segment like in 17 or by the application of the compensatory lengthening process like in 18, it remains floating (cf. van der Hulst and Smith, 1982). Two instances of floating X-slots are shown in 24. One of them results from the application of the glide elision rule to the $/ \mathrm{j} /$ and the other results from the application of the vowel shortening rule to the $/ \mathrm{i}: /$.

The second point is that when the output of a phonological rule does not conform to the constraints on syllable structures in the course of derivation, re-syllabification processes operate to re-syllabify it in accordance with these constraints (Clements \& Keyser, 1983; Mahadin, 1994). For example, the application of the glide elision rule in 24 causes the appearance of the two adjacent syllables $/ \mathrm{mi} /$ and /in/. The second syllable, i.e. /in/, is onsetless which violets MSA syllabification constraints. Accordingly, a re-syllabification rule applies and combines these two syllables into one syllable. The syllable /miin/ conforms to permissible syllable structures in MSA but it violates the OCP principle which bans adjacent identical elements at the segmental tier. Consequently, the two adjacent identical elements /ii/ are combined into the single long element /i:/ to ensure maintaining the OCP at the segmental tier.

As mentioned previously in this section, the AP surface representation ra:min is not only the result of declining ra:mi: for its genitive case but it can be also the outcome of declining this AP for its nominative case. Even though the declinations of this AP to its genitive and nominative cases yield the same surface representation, the latter case requires an extra rule, i.e. the vowel assimilation rule, to change the /iu/ sequence into /i:/. The representation of this instance of vowel assimilation rule is given in 25.

3.4. Doubly-Weak Aps

3.4.1. The Imperfective Stems of Doubly-Weak Aps

Doubly-weak imperfective stems, i.e. the stems that possess two glides in their consonantal roots, which serve as the bases for deriving doubly-weak APs in the current study are divided into two categories. The first category consists of stems which have their second and third radicals as glides, whereas the second category consists of stems which have glides as their first and third radicals. These two categories are identified by traditional grammarians as Pallafi:f Palmaqru:n 'weak stems that have adjacent glides in their consonantal roots' and Pallafi:f Palmafru:q 'weak stems that have non-adjacent glides in their consonantal roots', respectively (cf. Al-Faxiri, 1996; Abd Al-Ghani, 2010 and AlSamurrai, 2013). The former category of stems exhibits an underlying representation of the shape $\left|\mathrm{C}_{1} \mathrm{G}_{1} \mathrm{VG}_{2}\right|$ which surfaces as $\mid \mathrm{C}_{1} \mathrm{G}_{1} \mathrm{~V}$:| (e.g. ja-lwij $\rightarrow j a-l w i$: 'he bends') and the latter has an underlying representation of the shape $\left|\mathrm{G}_{1} \mathrm{C}_{2} \mathrm{VG}_{2}\right|$ which surfaces as $\left|\mathrm{C}_{2} \mathrm{i}:\right|$ (e.g. $j a-\boldsymbol{w} \boldsymbol{q} \boldsymbol{i j} \rightarrow j a-\boldsymbol{q i}$: 'he protects').

The derivation of the surface representations of the second category from their underlying representations conforms to the regular patterns of deriving initially and finally weak verbs. That is, the glide which occurs underlyingly in the initial position of these stems is /w/ and their stem vowel is /i/ and thus they all undergo the w-deletion rule stated in 6 (e.g. $j a-w h i j \rightarrow j a-h i j)$ and the glide that occurs
underlyingly in their final position undergoes the glide elision process stated in 23 (e.g. $j a-\underline{h} i j \rightarrow j a-\underline{h} i$: 'he inspires').

As for the stems of the first category, they follow the same derivational pattern of finally-weak verbs (e.g. ja-t-twij $\rightarrow j a-\underline{t} w i$: 'he folds') but they deviate from the pattern of deriving medially-weak verbs. This is ascribed to the observation that the $|\mathrm{GV}|$ sequence in these forms fails to alternate to $|\mathrm{V}:|$ akin to its counterpart in medially-weak verbs. For instance, the $|\mathrm{GV}|$ sequence in the medially-weak verb $j a-{ }^{c} \boldsymbol{w u} \boldsymbol{d}$ surfaces as $j a-{ }^{c} \boldsymbol{u}$:d 'he returns' but this sequence does not alternate to $|\mathrm{V}:|$ in the doubly-weak verb $j a$ $r w i j$ which surfaces as ja-rwi: 'he narrates/quenches'. In this regard, Brame (1970, p. 267) stated that "the medial glide of all roots of the shape CGG is exceptional with regard to Glide Metathesis." The glide metathesis is, according to Brame (1970), the first step for deriving the surface representations of medially-weak verbs from their underlying representations (see Section 3.2.1). This rule creates an environment in which the glide assimilation and vowel lengthening rules can apply. As a result of not applying the glide metathesis rule to the doubly-weak verbs which have roots of the shape $|C G G|$, the conditioning environment for its subsequent rules are not met in these verbs and thus their medial glides are retained.

Allowing the imperfective verbs that have roots of the shape $\left|\mathrm{CG}_{1} \mathrm{G}_{2}\right|$ to bypass the regular derivation of medially-weak verbs can be avoided if the second conditioning environment for the glide elision rule which is stated in 14 is slightly modified. Based on this conditioning environment, the glide which is preceded by a consonant and followed by a vowel, i.e. $|\mathrm{CGV}|$, undergoes the elision rule. The elision of the glides that occur in the $|\mathbf{C G V}|$ sequence can be further restricted by proposing that the vowel in this sequence must be followed by a [consonantal] consonant. The only consonants that lack the feature [consonantal] are the glides (Spencer 1996). Thus, $\left|\mathrm{G}_{1}\right|$ in the sequence $\left|\mathrm{CG}_{1} \mathrm{VG}_{2}\right|$ does not undergo the glide elision rule because its following vowel is followed by a glide, i.e. $\left|\mathrm{G}_{2}\right|$, lacking the [consonantal] feature.

Since the underlying form of the doubly-weak imperfective stems that have the root shape $\left|\mathrm{CG}_{1} \mathrm{G}_{2}\right|$ is $\left|\mathrm{CG}_{1} \mathrm{VG}_{2}\right|$, the glide elision rule does not apply to their medial glides. On the other hand, $\left|\mathrm{G}_{2}\right|$ in these stems meets the third conditioning environment for the glide elision rule, as stated in 23 , hence, it undergoes this rule. For example, the derivation of the surface representation of the doubly-weak verb as ja-rwi: 'he narrates/quenches' involves applying the glide elision rule to the final radical in the underling representation of its stem, i.e. rwij, and retaining its medial glide because it does not meet the conditioning environments for the glide elision rule.

3.4.2. The Derivation of Doubly-Weak APs from their Imperfective Stems

The 27 doubly-weak APs, which are listed in Appendix (D), exhibit derivational patterns that resemble the two categories of the imperfective bases form which they are derived. The APs that are derived from the imperfective bases of the shape $\left|\mathrm{G}_{1} \mathrm{C}_{2} \mathrm{VG}_{2}\right|$, akin to their imperfective bases, follow the general derivational patterns of initially and finally weak APs. Accordingly, the initial glide in these APs is retained and the final glide undergoes the elision rule. For instance, the derivation of the AP wa:qin 'a protector' from the imperfective stem wqij involves, in addition to alternating the stem vowel into /i/ and the infix /wa/ into /a:/, applying the glide elision, re-syllabification and vowel shortening rules that are stated in 24.

On the other hand, similar to their imperfective bases, the doubly-weak APs which are derived from bases of the shape $\left|\mathrm{C}_{1} \mathrm{G}_{1} \mathrm{VG}_{2}\right|$ follow the same pattern of deriving finally-weak APs but deviate from the derivational pattern of medially-weak APs. That is, the medial $|G|$ alternates to a glottal stop in mediallyweak APs (e.g. qa:wil $\rightarrow q a:$ Pil 'a teller') but this alternation does not take place in these doubly-weak verbs (e.g. ta:win \rightarrow ta:win 'a folder'). According to Brame (1970), the roots of the shape $|\mathrm{CGG}|$ are not only considered exceptions to the application of the glide metathesis rule but they are also exceptional with regard to the glottal formation rule and thus their medial glide does not alternate into $|\mathrm{P}|$.

Similar to their imperfective bases, the apparent irregularity of these AP stems can be simply accounted for by making a minor modification to the first conditioning environment for the glide elision rule which is stated in 23. Based on this conditioning environment, the glide which occurs between two vowels $|\mathrm{VGV}|$ undergoes the elision rule, except for the glides which are preceded by high vowels and followed by low vowels. The elision of the glides that occupy intervocalic positions can be further restricted by postulating that the second vowel in the $|\mathrm{VGV}|$ sequence must be followed by a [consonantal] consonant. Accordingly, $\left|\mathrm{G}_{1}\right|$ in the sequence $\left|\mathrm{VG}_{1} \mathrm{VG}_{2}\right|$ does not undergo the glide elision rule because the second vowel in this sequence is followed by a consonant which lacks the [consonantal] feature, i.e. $\left|\mathrm{G}_{2}\right|$. The underlying representation of the doubly-weak APs which have the root $|\mathrm{CGG}|$ is $\left|\mathrm{CwaG}_{1} \mathrm{iG}_{2} \mathrm{in}\right| \cdot\left|\mathrm{G}_{1}\right|$ in this representation is preceded by the vowel $/ \mathrm{a} /$ and followed by the vowel $/ \mathrm{i} /$ which in turn is followed by $\left|\mathrm{G}_{2}\right|$. Therefore, the glide elision does not target $\left|\mathrm{G}_{1}\right|$ because it does not meet the first conditioning environment for this rule.

The restatement of the glide elision rule in 4.19 with the modifications to the its first and second conditioning environments, which are made in Sections 3.4.2 and 3.4.1, respectively, is shown in 26.

4. Conclusions

The analysis of the current AP corpus reveals that the derivation of initially-weak APs from their imperfective bases involves no additional processes to the ones employed for the derivation of their strong counterparts. On the other hand, the medially, finally and doubly weak APs undergo, in addition to the process that derive strong APs, the glide elision rule which is followed by compensatory lengthening, re-syllabification and insertion processes. Accounting for these processes is only possible in the X -slot model of autosegmental phonology due to its reference to the quantity of segments independently of their quality and to it utilization of a purely phonological unit, viz. the syllable, for the statement of phonological rules.

5. Ethics Committee Approval

The author(s) confirm(s) that the study does not need ethics committee approval according to the research integrity rules in their country (Date of Confirmation: October 22, 2020).

References

Abd Al-Ghani, A. (2010). Passarf Palka:fi: [sufficient morphology]. Cairo: da:r Pttawfi:qijjah liltura: θ.
Abdo, D. (2008). Pabha: θ fi: Palkalimah wa PadJumlah [studies in the word and the sentence]. Amman: da:r Palkarmil.

Abdo, D. (2010). dira:sa:t fi: ${ }^{\text {c }}$ ilm Paswa:t Palc arabijjah [studies in Arabic phonology]. (VOL 2). Amman: da:r dzari:r.

Abu Salim, I. (1988). On the phonological status of /?/ in Classical Arabic. Albahth, 36, 71-79.
Abushunar, M. and Mahadin, R. (2017). An autosegmental analysis of Arabic passive participle of triliteral verbs, Arab Society of English Language Studies, 8, 252-267.
Al-Faxiri, S. (1996). tas_ri:f Pal2fea:l wa Palmasa:dir wa Palmuftaqqa:t [the inflection of verbs, verbal nouns and derived forms]. Cairo: ${ }^{\text {casmi liPannafir wa Pattwzi:c. }}$
Al-Nuri, J. (2007). ${ }^{c}$ ilm PalPaswa:t Pal ${ }^{c}$ arabijjah [Arabic phonology]. Palestine: dza:mi ${ }^{c}$ at Palquds Palmaftu:hah.
Al-Raajihi, A. (1984). Pattatbiiq Passarfi: [morphological application]. Beirut: da:r Pannahd Palcarabijjah.

Al-Samurrai, M. (2013). Passarf Palcarabij Pahka:m wa maca:ni: [the rules and meanings of Arabic morphology]. Sharjah: da:r Pibin kati:r.
Alshdaifat, A. (2014). The formation of nominal derivatives in the Arabic language with a view to computational linguistics (Unpublished Doctoral dissertation), University of Salford, Salford.
Aniis, I. (1975). PalPaswa:t Palluyawijjih [Arabic sounds]. Cairo: maktabat alPa:nglo Palmasirijijah.
Benmamoun, E. (1999). Arabic morphology: The central role of the imperfective. Lingua, 108,175201

Clements, G \& Keyser, S. (1983). CV phonology: A generative theory of the syllable. Cambridge: The MIT Press.

Goldsmith, J. (1976). An overview of autosegmental phonology. Linguistic Analysis, 2, 23-68.
Hayes, B. (1989). Compensatory lengthening in moraic phonology. Linguistic Inquiry, 20, 253-306.
Hetzron, R. (1992). Semitic languages. In W. Bright (Ed.), International Encyclopedia of Linguistics (pp. 412-417). Oxford: Oxford University Press.
Holes, C. (1995). Modern Arabic: Structures, functions and varieties. London: Longman.
Hulst, H. \& Smith, N. (1982). An overview of autosegmental and metrical phonology. In H. Hulst, H. \& N. Smith (Ed.), The structure of phonological representations (pp.2-45). Dordrecht: Foris Publications.

Ibin Asfor, A. (1987). Plmumtic fi: Pttasri:f [enjoyable morphology] (Vol. 1). Beirut: da:r Plmacrifah.
Ibin Jinni, A. (1954), Palmunsif [the equitable] (Vol. 2). Cairo: da:r Pihaja:? Pattura: θ Palqadi:m.
Kenstowicz, M. (1994). Phonology in generative grammar. Cambridge, Mass. \& Oxford: Blackwell.
Levy, M. (1971). The plural of the noun in Modern Standard Arabic. Ph.D. dissertation, University of Michigan.

Mahadin, R. (1982). The morphophonemics of the standard Arabic triconsonantal verbs. Unpublished Doctoral Dissertation, University of Pennsylvania, Philadelphia.

Mahadin, R. (1994). An X-skeleton of some phonological processes in Arabic. Al-Abhath, 42, 49-95.
McCarthy, J. (1982). Nonlinear phonology: An Overview. GLOW Newsletter. 50. Retrieved August 23, 2019 from https://scholarworks.umass.edu/linguist_faculty_pubs/50
McCarthy, J. (1994). The phonetics and phonology of Semitic pharyngeal. In P. Keating (Ed.), Phonological Structure and Phonetic Forms (pp. 191-233). Cambridge: Cambridge University Press.

Omar, A. (2008). uu c dुam Palluyah Pal ${ }^{c}$ arabijijah Palmucaasirah [the dictionary of Modern Standard Arabic]. Cairo: caalam alkutub.

Ryding, K. (2005). A reference grammar of modern standard Arabic. Cambridge: Cambridge University Press.

Shahin, A. (1980). Palmanhad3 Pssawtit lilbunjah Pal'arabijjah [a phonological analysis to Arabic structure]. Beirut: Parrisa:lah.

Spencer, A. (1996). Phonology: Theory and description. Oxford: Blackwell.
Sibawayh, A. (1982). Palkita:b [the book] (Vol. 4). ca:lam Palkutub wa Pattiba: ${ }^{\text {cah }}$ wa Pannafir:
Beirut.
Watson, J. (2002). The phonology and morphology of Arabic. Oxford: Oxford University Press.
Wright, W. (1896). A grammar of the Arabic language. Cambridge: Cambridge University Press
Żygis, M. (2010). Typology of consonantal insertions. ZAS Papers in Linguistics, 52, 111-40.

Appendix A. An example appendix

Table 5. Initially-Weak APs of the Pattern $\mathrm{C}_{1} \mathrm{a}: \mathrm{C}_{2} \mathrm{iC}_{3}$

Number	Dictionary	Gloss	Active	23	5571	to settle down	3xasdic
	entry		participle	24	5575	to leave	ywa:Ois
	number			25	5577	to inherit	wajrie
1	5525	to bury alive	3wazid	26	5578	to arrive	warrid.
2	5527	to agree with	ywa:2im	27	5583	to expand	3warif
3	5539	to perish	wsaibiq.				
4	5539	to perish	swa;bia	28	5584	to put forth	warria.
5	5540	to rain	sua;bil			leaves	
		heavily		29	5585	to have large	waurik
6	5540	to have bad	3xaibil			hips	
		consequences		30	5587	to become	wairim
7	5541	to wedge	3wastid			swollen	
8	5542	to hold back	watis	31	5592	to \sin	3xa:zir
9	5545	to jump	swa;eib	32	5594	to stop	3xazzic
10	5547	to trust	sua:9iq.	33	5596	to weigh	swaszin
11	5548	to settle	wsa;ein	34	5600	to be centered	3saisit
12	5499	to fall down	3wasdsib	35	5601	to expand	3xasic
		to be		36	5601	to encompass	wvasic
		imperative		37	5602	to envelop	wassiq
		to have a		38	5603	to need	33:5il
		meal		39	5604	to mark	waisim
		to beat rapidly		40	5608	to intertwine	wajldis
13	5550	to be sad for	3wasdzid	41	5613	to tattoo	waidins
		to adore		42	5616	to be	warsib.
		to hate		43	5618	consistent	wrasif
		across					
		to have		44	5619	to arrive to connect	333 szil .
		money				to treat good	

Appendix (B)
Table 6. Medially-Weak APs of the Pattern $\mathrm{C}_{1} \mathrm{a}: \mathrm{C}_{2} \mathrm{iC}_{3}$

Number	Dictionary entry number	Gloss	Active participle	4 5	817 822	to leave uncultivated to kiss	ba:Z3ia bat-2is
1	804	to deserve	ba:Cin	6	829	to sell	batzo
2	812	to reveal	ba:Cih	7	834	to urinate	ba:zid
3	813	to become silly	ba: 3 ix	8	850	to become	ba:Zit
				9	855	to diminish	ba:Zid
10	871	to lay eggs	ba:3id	44	1524	to menstruate	ha:Kid
11	873	to sell	ba=2ic	45	1526	to be unfair	haizif
12	879	to appear	baỉin	46	1527	to confine	haizia
		to leave		47	1528	to weave	ha:zik
13	1006	to repent	tai 2 ib	48	1529	to change	has 23.1
14	1013	to long		49	1530	to approach	haizin
15	1018	to get lost	tai3ih	50	1703	to roar	xa:3if
16	1022	to make possible for	taikih			to become weaker	
17	1029	to be in love	tai3im	51	1705	to go through	xaizid
18	1031	to get lost	taikih	52	1706	to be scared	xaizif
19	1079	to come back		53	1708	to betray	xa:3in
		to one's		54	1710	to fail	xa:zib
		senses		55	1711	to pick	xa:3ir
20	1080	to rebel	9a:3is	56	1715	to sew	xaiz3it
21	1261	to wander	dzaizib	57	1716	to be arrogant	xatzid
22	1264	to exist in	dzaizid			to assume	
		large numbers		58	1882	to feel dizzy	da:3is
		or amounts		59	1884	to keep	da:3ir
23	1267	to be unjust	dzaizir			moving in	
24	1269	to be accepted	dzaijiz			circles	
25	1270	to keep	d3a: ${ }^{\text {dis }}$	60	1887	to step on	da:3is
		coming back		61	1892	to be changed	da:Z31
26	1271	to be hungry	\$3a:3ic	62	1896	to persist	da:3im
				63	1898	to be	da:3in
27	1275	to roam	dzaizil			despicable	
28	1282	to occur	dzai3in	64	1922	to borrow	gaizin
29	1287	to quake	dzaizic	65	1984	to melt	¢a:zib
30	1288	to rot	dza:3if	66	1985	to prevent	ga:zid
31	1497	to \sin	ha:2ib	67	1986	to experience	¢a: 2 iq
32	1500	to keep	ha: 2 ic	68	1993	to be	ga:2ic
33	1501	to come back	ha: 2 ir			widespread	
34	1502	to possess	ha:Ziz	69	1994	to have a tail	¢a:2id
35	1503	to stop	ha:2iS	70	2216	to make	raizib
36	1507	to guard	ha: zit			skeptical	
37	1510	to contrive	ha: 2 ilk	71	2218	to drop dung	raizit
38	1511	to elapse	ha:3il	72	2219	to be current	railidz
		to stop		73	2220	to leave	raicih
39	1513	to move in circles	ha:3im	74	2220	to feel comfortable	raizih
40	1518	to alter one's	ha:Zid	75	2221	to lead	ravicid
		course		76	2228	to train	railid
41	1519	to be	has:3ir	77	2229	to be scared	ravic
		confused		78	2230	to elude	raizix
42	1520	to possess	ha:3iz	79	2231	to be pure	raitic
43	1523	to try to	ha: 3 is	80	2234	to aspire to	raiㄹim

81	2243	to make	raizib
		skeptical	
82	2244	to slow down	ra: 2 ie
83	2246	to smell	raiaih
84	2247	to have	ravic
		feathers	
85	2248	to increase	ravicic
86	2250	to be poured	raitig
87	2252	to depart	raijim
88	2253	to cover	raiein
89	2370	to run	zaipib
90	2373	to dislocate	za:Rih
91	2374	to prepare	zaipid
		supplies	
92	2375	to visit	za: 2 it
93	2377	to be removed	zat? ${ }^{\text {c }}$
94	2378	to deviate	zaidiv
95	2382	to cease to exist	zaatil
96	2383	to get angry	za:?im
97	2386	to oil	zapidit
98	2390	to disappear	za: 2 ih
99	2391	to increase	zaipid
100	- 2394	to become noisy	zal?it
101	2395	to swerve	zaidiv
102	2396	to act in a dishonest way	zaipif
103	2399	to beautify	zaipin
104	42667	to prevail	saitich
105	2669	to get angry	satipir
106	2670	to rule	sat?is
107	2672	to lash	saijit
108	2673	to be	saitix
		permitted	
109	2677	to lead	satipiq
110	2678	to rub	sapide
111	2682	to wander	sa:?im
112	2687	to flow	saipib
113	2692	to flow	saipin
		to cruise	
114	2693	to sink	saidix
115	2695	to walk	sai?it
116	2703	to taste good	saipix
117	2707	to stream	satidid
118	2916	to blemish	Sai?ib

119	2921	to kick	faipit
120	2923	to see	Sailif
121	2925	to yearn	faipiq
122	2926	to become	faipik
		strong	
123	2926	to be pierced	Saipik
		with a thorn	
124	2928	to become	daipid
		high	
125	2931	to be ugly	Saipih
126	2938	to build	faipid
127	2941	to burn	faipit
128	2943	to spread	faidic
129	2947	to pick up	faizid
130	2949	to disgrace	Saipin
131	3073	to be correct	salitib
132	3074	to yell	saritit
133	3078	to direct	saiPit
134	3079	to measure	saipic
135	3080	to mold	satijx
136	3082	to assault	sarit
137	3085	to fast	saijim
138	3087	to protect	saxijin
139	3089	to scream	satith
140	3090	to hunt	saipic
141	3092	to become	saipit
142	3095	to stay in the summer	satifif
143	3151	to be	da:3in
		lightened up	
144	3152	to be hungry	da:Cir
145	3154	to smell good	da:3ic
146	3156	to harm	da:Cir
147	3158	to be lost	da:3ic
148	3159	to host	da:Cif
149	3160	to be narrow	da:3iq
150	3161	to be unjust	da:Sim
151	3252	to go astray	tailih
152	3258	to obey	tai 2 ic
153	3259	to go around	tai3if
154	3260	to bear	ta: Pig
155	3261	to reach	tasid
156	3294	to go astray	tai ih
157	3265	to fly	tapis
158	3266	to be headless	tai 2 i ¢
159	3267	to obey	taje ${ }^{\text {c }}$
160	3268	to go around	ta: if

161	3269	to bear	tasi.iq
162	3271	to throw mud at	
163	3489	to contort	Caizidz
164	3490	to return	cailid
165	3491	to seek protection	caipid
166	3493	to miss	${ }^{\text {c a }}$: 3 iz
167	3496	to compensate	caijid
168	3497	to be stopped	caizic
169	3498	to be unjust	${ }^{\text {casizil }}$
170	3500	to float	${ }^{\text {caisim }}$
171	3504	to disfigure	caizib
172	3505	to ravage	${ }^{\text {caicijid }}$
173	3506	to disgrace	${ }^{\text {caichir }}$
174	3510	to hate	${ }^{\text {cas }}$, 2 if
175	3511	to stop	caizig
176	3512	to become poor	${ }^{\text {caind }}$
177	3625	to fall in	ya:3ir
178	3628	to dive	ya:3is
179	3629	to sink	ya:3it
180	3631	to destroy	ya:3il
181	3633	to speak ill of somebody to fall into a coma to absent oneself from	ya:Zib
182	3634	to help	ya:2ie
183	3636	to be jealous	ya:3ir
184	3637	to disappear	yaiRid
185	3638	to sink	ya: 3 it
186	3639	to enrage	ya:2ió
187	3642	to harm	ya:3il
188	3643	to be cloudy	ya:Sim
189	3872	to pass	faizit
190	3879	to spread a strong odor	fairin
191	3880	to boil over	faitis
192	3882	to win	fai?iz
193	3890	to surpass to hiccup	faitiq
194	3900	to utter	faisih
195	3902	to return	faiPin
196	3905	to spread a strong odor	fairih

197	3916	to be filled with	favicid
198	4129	to feed	ga: 3 it
199	4131	to lead	gaa:3id
200	4133	to measure	qa: $\mathrm{siz}^{\text {a }}$
201	4134	to demolish	ga: Rid
202	4137	to follow	ga:Zif
203	4138	to cackle	ga: 2 iq ,
204	4141	to speak	ga: 2 il
205	4145	to stand up	gaiरim
206	4148	to vomit	gaajin
207	4151	to tie	gas:Sid
208	4154	to measure	qaizis
209	4158	to crack	ga: 2 id
210	4159	to become hot	ga:2ior
211	4160	to crackle	ga:3iq
212	4161	to nap	ga: 3 il
213	4451	to drink from a jug	ka:3iz
214	4473	to exist	kat2in
215	4480	to deceive	kaizid
216	4487	to weigh	ka:3il
217	4494	to be weak	kaizin
218	4641	to dirty	1a:3id
219	4644	to appear	1a:3h
220	4645	to escape	1a:2id
221	4649	to ask for protection	1a:2iz
222	4651	to cling to to be gay	1ateit
223	4653	to be impatient	1a:3ic
224	4655	to chew	1a:3if
225	4656	to chew	1a: il k
226	4660	to blame	1a:3im
227	4666	to deprive from	1aidit
228	4675	to be fit for	1aiPig
229	4945	to die	ma: it
230	4947	to surge	ma:2idz
231	4949	to surge	ma:2ir
232	4968	to be rich in water	ma:2h
233	4974	to sway	ma:2id
234	4976	to provide	ma:2ir
235	4977	to distinguish	ma:2iz
236	4978	to strut	ma:? ${ }^{\text {is }}$

237	4979	to move away	ma:2it	249	5281	to rise	na:2if
		from		250	5284	to get	na:2ib
238	4980	to become	ma: $\mathrm{Tic}^{\text {c }}$	251	5285	to sleep	na:3im
		fluid		252	5291	to be	na:Cib
239	4990	to deviate	ma:3id			unfortunate	
		from		253	5296	to line up	na:3ir
240	4996	to be rich in	ma: 3 ih	254	5303	to achieve	na:3id
		water		255	5480	to repent	has:2id
241	5265	to burden	na:Sin	256	5482	to collapse	hasizis
242	5266	to return	na:2ib				
		to be affected		257	5484	to tremble	hatzif
		by		258	5486	to fear	ha:3il
		to take place		259	5492	to look good	hasiSin
		of		260	5494	to fear	has:3ib
243	5269	to moan	na:3ih	261	5496	to be agitated	ha:2ids.
244	5271	to illuminate	na:3ir	262	5510	to break	has:Zid
245	5275	to vacillate	na:<is	263	5511	to be wide	hathic
246	5276	to take	na:Ri¢	264	5517	to wander	ha: im
247	5278	to resort to	na:Cis			to be thirsty	
248	5279	to be dependent on	na:Zit				

Appendix (C)

Table 7. Finally-Weak APs of the Pattern $\mathrm{C}_{1} \mathrm{a}: \mathrm{C}_{2} \mathrm{iC}_{3}$

Number	Dictionary entry number	Gloss	Active participle
1	43	to become a father	3a:bin
2	45	to refuse	3a:bin
3	56	to come	3a:tin
4	83	to have a brother	3axin
5	178	to comfort	3a:sin
6	179	to heal	3asing
7	253	to weaken	3a:lin
8	324	to slow down	3a:nin
9	522	to appear	baidin
10	605	to sharpen	bacrion
11	689	to be unjust to want	baxyin
12	703	to stay	ba:gin

13	713	to cry	badkin
14	751	to test	badin
15	751	to wear off	ba:lin
16	789	to build	basuin
17	803	to look beautiful	ba/hin
18	985	to follow to recite	tailin
19	1057	to bleat	Qaxyin
20	1078	to bend	Gainin
21	1110	to collect	dza:bin
22	1111	to collect	dza:bin
23	1114	to bow	dza: in $^{\text {a }}$
24	1164	to run	dza:rin
25	1172	to recompense	dza:zin
26	1197	to harden	dza:fin
27	1214	to rinse	dza:lin
28	1245	to commit a crime to gather	dza:nin

29	1328	to throw	ha: θ in	58	1803	to call	da-cin
30	1329	to throw	ha: θ in	59	1840	to express	da:lin
31	1337	to be wise	ha:dzin			one's opinions	
32	1337	to be wise	ha:dzin	60	1856	to bleed	darmin
33	1347	to sing for	hadin				
		camels		61	1863	to get closer	da:nin
		to follow		62	1876	to be	da:hin
34	1355	to imitate	ha:\%in			experienced by	
35	1397	to sip	hasisin	63	1878	to be	da/hin
36	1404	to stuff	hasin			experienced	
37	1434	to give	haifin			by	
		generously				to be insightful	
38	1434	to walk	hasfin	64	1958	to disperse	¢алті
		barefoot		65	1959	to disperse	¢алгin
39	1446	to talk	ha:kin	66	1969	to intensify	\%adkin
40	1459	to be sweet	ha:lin				
41	1476	to be hot	harmin	67	2032	to increase	raibin
42	1477	to protect	harmin	68	2032	to row	rabib
		to put someone		69	2045		ratin
		on a diet				commemorate	
		to be hot		70	2046		ratein
43	1493	to feel	ha:nin			commemorate	
		compassion		71		to hope	raidzin
		for		72	2066	to cause to	rabin
44	1494	to bend	haznin			revolve	
45	1553	to be	xa:bin	73	2067	to grind	
		extinguished		74	2104	to moor	rasisin
46	1624	to fear	xadin	75	2112	to bribe	rajin
				76	2124	to be satisfied	taidin
47	1632	to be castrated	xassin				
48	1650	to walk	xation	77	2140	to herd sheep	rasin
49	1657	to be hidden	xa:fin			to care for	
50	1658	to hide	xa:fin	78	2146	to froth	ravin
51	1658	to be hidden	xacifin	79	2160	to grunt to get married	ra:fin
52	1673	to be empty to be devoted to	xadin	80	2171	to recite Quran over someone for healing and protection	ra:qin
53	1696	to use impolite language	xajnin				
				81	2171	to advance	ra:gin
				82	2196	to throw	ramin
54	1697	to use impolite language	xajnin	83	2206	to look forward to	ramin
55	1747	to become	da:dzin	84	2274	to push gently to mock	za:dzin
		dark		85	2297		zasin
56	1753	to flatten	da-hin	86	2325	to increase	za:kin
57	1754	to flatten	da-hin	87	2326	to increase	zaikin
				88	2365	to fornicate	zasnin

89	2369	to be arrogant	za:hin	126	3136	to increase	da:fin
90	2434	to imprison	sa:bin	127	3184	to flatten	ta:hin
91	2454	to be calm	sa:dzin	128	3208	to be despotic	taixin
		to cover		129	3217	to float	tajifin
92	2466	to dredge	sabin	130	3030	to paint	taalin
93	2466	to dredge	saphin	131	3040	to silt	ta min
94	2474	to become	saxin	132	3248	to cook	ta:hin
		generous		133	3249	to cook	ta:hin
95	2475	to become	saxin	134	3308	to be arrogant	catin
		generous				to be very old	
96	2511	to walk	sa:rin				
		to spread		135	3311	to cause	catin
97	2520	to assail	satin			mischief	
98	2527	to strive	sacin	136	3312	to cause	Caitin
		to betray				mischief	
99	2545	to disperse	sa.fin	137	3330	to run	cadin
100	2554	to give	sa:gin			to be unjust	
		someone a		138	3355	to befall	${ }^{\text {carinin}}$
		drink		139	3356	to get nacked	${ }^{\text {charin }}$
101	2590	to forget	sa:lin	140	3367	to be ascribed	calzin.
102	2590	to cause to	sa:lin			to	
		forget		141	3368	to be ascribed	caizin
103	2618	to rise up	sammin			to	
104	2652	to lighten	sainin	142	3395	to disobey	casisin
105	2658	to forget	sa/hin	143	3419	to be removed	caifin
106	2760	to rain	Saitin			to forgive	
107	2766	to become sad	¢aidzin	144	3449	to be high	cailin
108	2788	to sing	faidin	145	3451	to rise	casilin
109	2792	to smell good	faidin	146	3482	to take by	cainin
110	2813	to buy	Sarin			force	
111	2858	to heal	Sajin			to submit to	
112	2866	to be distressed	faigin	147	3484	to pay attention to	Cannin
113	2873	to complain	Sakin			to be	
114	2875	to complain	faikin			exhausted	
115	2969	to long for	saibin	148	3530	to feel sick	ya: θ in
116	2970	to act boyishly	saibin	149	3531	to feel sick	ya: θ in
117	2977	to wake up	saihin	150	3531	to feel sick	ya: θ in
118	2978	to wake up	saihin	151	3531	to talk a lot	ya: $\mathrm{\theta}$ in
119	2991	to get thirsty	sadidin	152	3538	to leave at	yadin
120	3010	to decline from	saivin			lunch time	
121	3011	to decline from	saivin			to become	
122	3020	to be pure	satifin	153	3540	to feed	ya:ðin
123	3039	to be tortured	sarlin	154	3559	to glue	уахгin
124	3113	to be in the	da:hin	155	3565	to invade	ya:zin
		forenoon		156	3571	to darken	ya: $\int \mathrm{jm}$
125	3126	to fight hard	da:rin			to come upon	

157	3590	to sleep	ya:fin	198	4838	to walk	ma: lin
158	3591	to sleep	ya:fin	199	4848	to go away	madin
159	3603	to become	ya:lin			to sign	
		expensive		200	4888	to whistle	makin
		to be excessive		201	4927	to test	maxin
160	3604	to boil	ya:lin	202	4928	to test	manin
161	3622	to become rich	yazin	203	4999	to be distant	na:3in
162	3714	to sacrifice	fadin	204	5026	to be	na:bin
163	3761	to lie	farin			inconsistent	
164	3779	to fart	farsin			with	
165	3787	to spread	fajin	205	5055	to make a	na:dzin
166	3797	to be empty	fadin			secret	
167	3845	to delouse	fa:lin			conversation	
168	3848	to delouse	fa: lin			to survive	
169	3863	to perish	fannin	206	5066	to head for	na:hin
170	3945	to bend	ga:bin	207	5076	to be proud	naxxin
171	3970	to have motes	ga:Cin	208	5103	to need	na:zin
		in the eye		209	5116	to leave	nassin
172	4007	to follow	ga:rin	210	5117	to forget	nassin
173	4008	to host	qa:rin	211	5133	to get drunk	nas \int m
174	4021	to be harsh	ga:sin	212	5142	to catch from	nasisin
175	4042	to become distant	qa:sin	213	5150	the forelock to undress	na:din
176	4046	to judge	ga:din	214	5171	to make a	na-cin
177	4058	to miaow	ga:cin			sound	
178	4073	to follow	ga:fin	215	5172	to announce	na-cin
179	4089	to fry	ga:lin			the death of	
180	4089	to hate	ga:lin			someone	
181	4121	to become red	ga:nin	216	5183	to babble	navxin
182	4224	to fall	ka:bin	217	5200	to deny	na:fin
183	4342	to sheathe	kassin	218	5235	to defeat	na:kin
184	4372	to have enough	ka:fin	219	5248	to grow	na:min
185	4428	to call	kajnin	220	5250	to increase	na:min
186	4428	to imply	kaznin	221	5264	to prevent	nadhin
187	4544	to peel	lathin	222	5350	to rise	ha:bin
188	4570	to blaze	1a:Oin	223	5366	to satirize	ha:dzin
189	4585	to smatter	lavin	224	5379	to guide	hadin
190	4585	to smatter	lavin	225	5383	to ramble	ha:din
191	4603	to encounter	lagin	226	5399	to hit with a	hasing
192	4634	to be amused	1a:hin			baton	
		to be distracted		227	5402	to wear out	hasrin
193	4634	to divert from	labin			clothes	
194	4754	to remove	mathin	228	5429	to be mistaken	ha:fin
195	4756	to erase	mathin	229	5464	to wander	haumin
196	4769	to stab	madin				
197	4808	to be ungrateful	maxin				

Appendix (D)
Table 8. Doubly-weak APs of the Pattern $\mathrm{C}_{1} \mathrm{a}: \mathrm{C}_{2} \mathrm{iC}_{3}$

Number	Dictionary entry number	Gloss	Active participle
1	372	to	3a:win
		accommodate	
2	1083	to settle	Qawin
3	1709	to be empty	xawin
4	1514	to include	hawwin
5	1901	to make loud	dawin
		noise	
6	1990	to wither	\%awin
7	2241	to quench	raizuin
		to narrate	
8	2385	to dismiss	za:xin
9	2932	to barbeque	Caizuin
10	3155	to join	dawin
11	3155	to be weak	dawin
12	3262	to fold	tawin
13	3503	to bark	caiwin
14	3632	to deviate	yawin
		from what is	

15	4477	to burn	kawin
16	4664	to bend	lawin
17	5289	to depart	nawwin
		to intend	
18	5490	to fall	havwin
		to perish	
19	5564	to inspire	wathin
20	5574	to give blood	wa:din
		money	
21	5615	to adorn	wa: lin
		to inform	
		against	
22	5646	to realize	wa-in
23	5655	to fulfill	wa:fin
		to increase	
24	5665	to protect	wa:qin
25	5687	to be close	wa:lin
		to rule	
26	5692	to abandon	wa:nin
27	5701	to be weak	wathin

Modern standart Arapça'da üç ünsüzden oluşan fiillerden zayıf aktif sıfat-fiil türetilmesinin otomatik segment analizi

Öz

Bu çalısma, otosegmental fonolojinin X-slot modelinde triconsonantal eksik fiillerden zayıf aktif sıfat fiil türetilmesini analiz etmeyi amaçlamaktadır. Araştırmanın ilk aşaması, sağlam köklü bir sözlükten korpus oluşturmayı içerir. Korpus, başta, ortada, sonda ve iki kat zayıf sıfat fiil olarak kategorize edilen 620 sıfat fiil içerir. Analiz, düzensiz yüzey temsillerine sahip olmalarına rağmen, zayıf sıfat fiillerin temeldeki temsillerinin güçlü emsallerininkilerle paralel olduğunu ortaya koymaktadır. Bu sıfat fiillerin yüzey düzensizlikleri, kaymaların çeşitli fonolojik kurallara duyarlı olmalarına neden olan doğal kararsızlığına atfedilebilir. Bu fonolojik kurallara, bu yaklaşımda farklı katmanlardaki öğelerin sahip olduğu özerklik nedeniyle, otomatik segmental fonolojide doğru ve basit temsiller verilmiştir.
Anahtar sözcükler: Otosegmental fonoloji; MSA; korpus çalışması; zayıf gövdeler; sıfat fiil

AUTHOR BIODATA

Eman Awni Ali is a lecturer at the University of Jordan. She received her BA in English Language and Literature from Al-Balqa'a Applied University in 2010 and her PhD in Linguistics from the University of Jordan in 2020. Ali's research interests include the areas of phonology and phonetics, language acquisition and sociolinguistics. ORCID: https://orcid.org/0000-0001-5652-4813
Radwan Salim Mahadin is a Professor of linguistics at the University of Jordan, Amman, Jordan. He received his BA in English Language and Literature from the University of Jordan in 1976 and his PhD in Linguistics from the University of Pennsylvania in 1982. Mahadin's research interests include, but not limited to, the areas of phonology and phonetics, discourse analysis, semantics, pragmatics and historical linguistics.

[^0]: ${ }^{1}$ Corresponding author.
 E-mail address: emanawniali@gmail.com

